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Abstract. We present a method called SMDG (Single Multi-Disease Genes) for 
systematic discovery of monogenic causes of multi-diseases. Multi-disease 
conditions, quite common in older populations, are difficult to treat due to missing 
their precise medical guidelines and need for attention of multiple health care 
providers. Finding monogenic causes of these diseases would enable introducing  
new therapeutic approaches, focused on the remediation of mutations of single 
genes. SMDG is based on the hierarchical divisive clustering of electronic medical 
records (EMR) that include genetic data, and on the analysis of the public gene-to-
disease and gene-to-gene repositories. The method was tested on the database of 
the Harvard Personal Genome Project (PGP), the gene-to-disease repository 
DisGeNET and the gene-to-gene interactions repository BioGRID. It identified 
possible new monogenic causes of selected multi-diseases, which were confirmed 
as valid hypotheses by examining related research papers. 
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1. Introduction 

We are proposing a method for discovering monogenic causes of multi-diseases. We 
assume that a multi-disease is a set of co-occurring diseases without a primary one, 
while co-morbidity is a disorder characterized by a primary disease and several 
secondary diseases.  

This method, called Single Multi-Disease Genes (SMDG), is based on the 
clustering of electronic medical records (EMR) that include patient genetic data, and 
the analysis of the public gene-to-disease and gene-to-gene association repositories. Its 
output is a set of hypothetical monogenic causes of multi-diseases, which can be 
further investigated and confirmed in targeted research projects.  

Why are we interested in this research? Patients with multi-diseases require 
attention of several health care providers, which complicates their diagnostic and 
treatment processes. In addition, medical guidelines for multi-diseases are limited or 
non-existent, which could cause adverse effects of overmedication. Also, the 
monogenic causes of multi-diseases are not systematically tracked in the public gene-
to-disease repositories, nor are there effective methods for their finding.  

The goal of this research is to introduce and elaborate a method that would aid the 
identification of monogenic causes of multi-diseases, which in turn could speed up 
finding their effective therapies focused on mutations of single genes.  
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The inputs, outputs, steps and formulas of SMDG are specified in Sections 2 and 3. 
SMDG was validated by using the Harvard Personal Genome Project database (PGP) 
[1], and genetics repositories DisGeNET [2] and BioGRID [3]. The results, discussed in 
section 4, identify a new hypothetical monogenic cause of a selected multi-disease, 
which was confirmed by examining available research papers. In section 5 we compare 
SMDG with similar methods and suggest its possible extensions. 

2. SMDG inputs and outputs 

SMDG inputs are: (i) an EMR repository (EMR), (ii)  a  Gene-to-Disease Association 
Repository (GDR) and (iii) a Gene-to-Gene Interaction Repository (GGR).  

The current version of SMDG requires only the patient diseases and mutated genes 
from EMR, i.e. EMR ⸦ P × ℙ (DIS) × ℙ (GEN) (P is a set of patient IDs, DIS is the set 
of all diseases, GEN is the set of all genes and ℙ powerset symbol). EMR element, r = 
(p, D, G) EMR, is a triplet of patient ID, a set of patient’s diseases D and a set of 
patent’s mutated genes G.  

SMDG needs only the gene-to-disease pairs from GDR (GDR ⸦ GEN × DIS). 
Similarly, required content from GGR is only a set of gene pairs (gm, gn) GGR ⸦ 
GEN × GEN.  (gm, gn) is an ordered pair, meaning that gene gm can change behavior of 
gene gn (i.e.  gm is a “bait” and gn a “hit”).  Other components of EMR, GDR and GGR, 
such patient demographics, gene-to-disease association types and gene-to-gene 
interaction types, can be added to an extended version of SMDG (more in Section 5).  

SMDG outputs are: (i) Set of multi-diseases, MD ⸦ ℙ (DIS) (single multi-disease 
is denoted as md MD), and (ii) Set of weighted hypothetical multi-disease genes 
HMDG ⸦ MD × GEN × W. W=(0,100] is a set of weights of the hypothetical genes.  

Example of a multi-disease found in PGP EMR is md2 = {Hyperlipidemia, 
Hypertension, Allergy}, and one of its hypothetical genes is TP53 with weight 100, i.e. 
(md2, TP53, 100) MDG.  SMDG test results are discussed in Section 4. 

3. SMDG Steps 

Step 1: Prepare the EMR repository (EMR) in a relational database, which 
stores patients’ diseases and genes as set-valued categorical data along with patient IDs. 
Align the disease names and gene symbols between the EMR, GDR and GGR. 

Step 2: Apply a clustering algorithm to find multi-diseases md in EMR. A 
review of projects that used the clustering of EMR data can be found in paper [4]. We 
developed a version of the divisive hierarchical clustering algorithm in PL/SQL 
language. The algorithm assumes that the diseases are stored as set-valued categorical 
attributes. This type of data mining requires no supervision and can be further 
optimized for large EMR databases by using various database optimization techniques.  

Distance function dist of this algorithm is based on the Jaccard factor: If D1 and D2 

are disease sets of records r1, r2 EMR then dist (r1, r2) = 1– |D1 ∩ D2| / |D1 D2|, dist 
0, 1].  The Jaccard distance function (also called dissimilarity function) is used in 

clustering of set-oriented categorical data. For example, in paper [5] it was applied 
within a k-means clustering algorithm. We used it to find sub-cluster centroids and to 
allocate EMR records to these clusters. The algorithm output is a set of clusters C ⸦ 
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ℙ(EMR). The algorithm will stop dividing a cluster Ci  C if |Ci| < cmin or dist (r1, r2) 
≤   distmax for any records r1, r2 Ci. cmin and distmax are SMDG parameters.  

The most common diseases found in the leaf cluster records r (r Ci) define multi-
diseases mdi. The maximum number of diseases in each mdi is controlled by SMDG 
parameter dmax, i.e. |mdi| ≤ dmax. For example, in our testing, discussed in Section 4, 
the most frequent diseases found in cluster C2 were md2= {Hyperlipidemia, Allergy,  
Hypertension }, for dmax = 3.  

Step 3: Find candidate multi-disease genes of each md as set NMDG ⸦ MD × ℙ 
(GEN). NMDG= {(md, NG): md MD, NG= {G: (p, D, G)  EMR, md  D}}. For 
example, candidate genes of multi-disease md2  are {APOB, TP53, …}.The complete 
list can be found in Section 4.  

Step 4: Use GDR to find confirmed multi-disease genes for each md as set 
CMDG ⸦ MD × ℙ(GEN). A confirmed gene can cause each disease of a multi-disease, 
i.e. CMDG= {(md, CG): md MD, CG={g: ( d md) ( (g, d)  GDR)}}. For example, 
for the above md2,   GDR DisGeNET returns CG = {SELE, AHR, PLAT, ALB}.  

Step 5: Use GGR to find precursor genes of the confirmed genes, denoted as set 
PMDG ⸦ MD × ℙ(GEN). If PG is the set of precursor genes of md then (md, PG) 
PMDG. The precursor genes are either direct predecessors of confirmed genes or there 
is a path of interacting genes between them. The maximum count of interacting genes 
is an SMDG parameter called maxpath   Z (set of non-negative integers). For example, 
if gp, gp1, gp2  PG, gc is a confirmed gene, and (gp2, gc), (gp1, gp2), (gp, gp1)  GGR then 
valid paths are (gp2, gc), (gp1, gp2, gc) and (gp, gp1, gp2, gc) for maxpath = 2. 

Step 6: Calculate the weights of the precursor genes, which indicate possibility 
that a gene can cause a multi-disease.  Let introduce functions gdc and w, as follows. 
gdc returns from GDR the count of known associations between a gene and all 
individual md diseases. gdc = MD × GEN → Z. gdc (md, g)=|{d: d md, (g, d) 
GDR}|. gdc =|md| for confirmed genes.  

w is the gene weight function defined as w = MD × GEN → (0,100]. If gp is an md 
precursor or a confirmed md gene, then weight of gp  is calculated as: 

w (md, gp) = max (gdc (md, gp) / |md| * 100 + glw *  (md, gps ), 100).  

Component gdc (md, gp) / |md| * 100 returns the count of individual md diseases 
caused by gene gp, which is mapped to a value in [0,100]. It has value 100 for 
confirmed genes. Component glw * (md, gps ) returns a modified sum of weights 
of all direct successor genes gps of gp from paths connecting gp with the confirmed 
genes. In a special case, gps is a confirmed gene with weight 100. Np is the number of 
these paths, and glw is the relative weight of a gene-to-gene interaction when compared 
to the weight of a direct gene-to-disease association. glw is an SMDG parameter and its 
recommended values are between 0.01 and 0.1. Function max limits value of w to 100.  

Function w is recursive, and its value is calculated first for direct precursors of 
confirmed genes then for their precursors at the next level and so on.  

Step 7: Find hypothetical multi-disease genes, as set HMDG ⸦ MD × GEN × W, 
W=(0,100]. A hypothetical gene of md is an element from the intersection of the 
candidate md genes NG and the precursor md genes PG, which is then  extended with 
its weight. HMDG= {(md, g, wght): md MD, ( (md, NG)  NMDG, (md, PG) 
PMDG, g NG ∩ PG), wght = w (md, g)}.  
Step 8: Test the hypothetical multi-disease genes in targeted research projects. 
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4. SMDG testing and validation 

We used the following inputs to develop, test and validate the SMDG method: (i) 
Database of Harvard Personal Genome Project - PGP [1], which includes about 2000 
medical records with the demographic, disease, genetic, medication, lab tests and other 
EMR data, (ii) DisGeNET [2], a curated gene-to-disease repository and (iii) BioGRID 
[3], a gene-to-gene repository that records the human genetic and protein interactions.  

In step 3.1 we extracted the disease and genetic data from PGP and aligned the 
disease names and gene symbols between EMR, GDR and GGR. Then we applied the 
SMDG hierarchical clustering algorithm (step 3.2) with the minimal cluster size cmin = 
60, maximum distance between cluster elements dismax = 0.6 and the maximum 
number of md diseases dmax = 3. Seven multi-diseases were found in leaf clusters, for 
example, md1= {Depression, Anxiety, Allergy}, md2= {Hyperlipidemia, Hypertension, 
Allergy} and md3= {Hypertension, Hyperlipidemia, Depression}.  

We selected md2 for further analysis, and step 3.3 returned the following candidate 
genes: {APOB, PCSK9, WFS1, SP110, SLC45A2, AGTR1, COL4A1, FUT2, GUCY2D, 
KCNJ11, MTRR, PKP2, PMS2, PTCH1, RP1, TP53, BRCA2, ELAC2, H6PD, IL7R,  
MLH1, TAS2R38, TYR}. 

Next step (3.4) produced 4 confirmed md2 genes from DisGeNET: {SELE, AHR, 
PLAT, ALB}. Then we found their precursor genes (Step 3.5) by taking maxpath = 2 
and calculated their weights (step 3.6). These steps resulted in 13,103 precursor genes 
and 495,208 of their dependency paths to confirmed genes SELE, AHR, PLAT and ALB.  

We reduced the set of these precursor genes to the md2 candidate genes from PGP. 
Finally, in Step 3.7 we selected the following hypothetical genes for further analysis: 
(APOB, 80.44), (TP53, 100), (MLH1, 71.98), (BRCA2, 60.7).  

Figure 1 illustrates the above steps.  
 

 
Figure 1. Example of hypothetical monogenic causes of multi-disease md2. 

According to DisGeNET, mutations of APOB can cause Hyperlipidemia and 
Hypertension, TP53 and MLH1 Hypertension and BRCA2 none of the md2 diseases.  

Gene TP53 was taken for further analysis due to its high weight resulting from its 
numerous dependency paths to the confirmed md2 genes (Step 3.8). DisGeNET did not 
indicate that this gene can cause Hyperlipidemia and Allergy, however our further 
investigation showed that it could indeed cause these diseases [10, 11]. 
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5. Discussion 

To the best of our knowledge, methods for finding hypothetical single multi-disease 
genes have not been addressed yet, despite their significance discussed in the 
introduction. Several projects examined disease co-morbidities, which correspond to 
the SDMG step 3.2. For example, projects [6] and [9] aim at finding frequent disease 
co-morbidities by analyzing the EMR and genetics repositories. Projects [7] and [8] 
build clusters of co-occurring diseases by investigating the genetics repositories only.  

Method SMDG, presented in this paper, is an innovative approach to finding 
hypothetical single multi-disease genes, which is based on the analysis of both EMR 
repositories and genetics repositories. We find that data mining of EMR is pivotal, as it 
helps finding not only frequent multi-diseases but also their candidate monogenic 
causes. Without identifying candidate genes in EMR, the number of hypothetical multi-
disease genes obtained only from the genetics repositories could grow rather high 
making it difficult to select the hypothetical genes for further investigation. For 
example, our tests returned from BioGRID about 13k precursor genes of a sample 
multi-disease discussed in Section 4 for paths with maximum two internal genes.  

In the future research, the SMDG method can be extended in different ways, which 
could improve its effectiveness and efficiency in finding frequent multi-diseases and 
their monogenic causes. Examples of these extensions are: (i) inclusion of the 
environmental, demographic and other data into EMR and the clustering distance 
function, (ii) extension of that function with the disease frequencies, (iii) comparison of 
various EMR clustering algorithms for finding multi-diseases and their candidate genes 
in large EMR repositories, (iv) weighting the gene-to-disease associations according to 
their type (i.e. biomarker, therapeutic..) and (v) weighting the gene-to-gene interactions 
according to their types (i.e. as genetic, physical..).  
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