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A B S T R A C T   

Background: Combined polypharmacy treatments of multi-diseases like diabetes mellitus type 2 (DMT2) with its 
comorbidities could lead to serious adverse reactions (ADR) due to drug-drug interactions (DDIs). This study 
aimed to demonstrate that these DDI ADRs can be significantly reduced by carefully examining DDIs of rec
ommended drugs and using advanced clinical decision support (CDS) tools, like PM-TOM (Personal Medicine: 
Therapy Optimization Method). 
Method: DMT2 with heart failure (HF) and atherosclerotic cardiovascular disease (ASCVD) were taken for 
analysis. First, 20 drug classes were selected, recommended in relevant medical guidelines (US, European and 
Canadian); for example, biguanides, sodium-glucose transporter 2 inhibitors, glucagon-like peptide-1 receptor 
agonists, insulins, angiotensin 2 receptor blockers, angiotensin-converting enzyme inhibitors, beta-adrenergic 
blockers, diuretics, and statins. Next, these classes were combined into polypharmacy treatment cases, which 
were organized into three groups: Basic (combinations of three drug classes), Medial (five), and Advanced 
(eight). Then, the tool PM-TOM was used to find treatments with minimal and maximal drug interactions (MIN- 
DDI and MAX-DDI) for each case. Finally, these two treatments’ minimal, average and maximal DDIs were 
calculated and statistically analyzed to examine the scope and effects of optimizing polypharmacy treatments in 
each case group. 
Results: In the Basic group, 16 polypharmacy treatment cases were created; in the Medial 210 and the Advanced 
736. The MIN-DDI and MAX-DDI treatments in each case group showed significant DDI differences; for example, 
in the Basic group, the average DDI count in the MIN-DDI treatments was 0.19 and in the MAX-DDI ones 1.75, 
while in the Medial and Advanced groups, these indicators were 1.66 and 7.66, and 5.76 and 20.52, respectively. 
Also, 87% of optimized treatments (MIN-DDI) in the Basic group showed no DDIs, 37% in the Medial, and 9% in 
the Advanced. In addition, 70% of cases in the Medial group had at most two DDIs, and 49% in the Advanced 
group at most five. 
Conclusions: These findings suggest that DDI ADRs in randomly selected (unoptimized) DMT2 polypharmacy 
treatments can be substantially reduced using specialized decision support tools, increasing patients’ chances for 
successful treatment and decreasing health care costs. Similar findings can be expected for other multi-diseases as 
well.   

1. Introduction 

1.1. Drug-drug interactions and adverse drug reactions 

Adverse drug reactions (ADRs) in polypharmacy treatments, due to 
drug-drug interactions (DDIs) or other reasons, can cause complex 

medical conditions and even death in patients exhausted by illness, 
inadequate treatment, or age-related issues and, in addition, increase 
healthcare costs. The article Preventable Adverse Drug Reactions: A Focus 
on Drug Interactions by US Food & Drug Administration Agency (FDA) 
[1] summarizes alarming findings from various studies, such as that 
ADRs could be the fourth leading cause of death in the US. Also, ADR 
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costs could be as high as 136 billion yearly (data from 2000), and ADR 
rates increase exponentially after a patient is on four or more medica
tions. A newer study [2] announced even more serious findings: the 
estimated annual cost of drug-related morbidity and mortality from 
nonoptimized medication therapy in 2016 was $528.4 billion, equiva
lent to 16% of US healthcare expenditures. The above FDA report con
cludes that ADRs are a significant public health problem that is, for the 
most part, preventable. 

Clinical decision support (CDS) tools, currently used in clinical 
practice [3], raise alerts on DDIs in prescribed medication treatments 
without suggesting how to minimize them. The alert numbers can be 
high, so doctors override them without changing the prescribed treat
ments. For example, a study [4] collected data on DDI alerts and over
ride reasons from 10 clinical sites across the United States and found that 
the overall override rate was very high, at 91%, where 78% of these 
overrides states: will monitor or take precautions, not clinically significant, 
and the benefit outweighs the risk. This phenomenon is called Alert fatigue, 
where too many alerts are presented so that health providers dismiss 
them regardless of their importance. One of the main reasons for alert 
fatigue is the high number of alternative polypharmacy treatments, so 
doctors (physicians, clinicians, or clinical pharmacists) cannot optimize 
them without specialized CDS tools. 

1.2. Study motivation and objectives 

Adding polypharmacy optimization functions to CDS systems would 
decrease alert fatigue and enable doctors to focus on finding effective 
and stable polypharmacy treatments that do not need frequent adjust
ments caused by DDIs. Consequently, the mortality and morbidity of 
polypharmacy patients would be reduced, their chances for recovery 
would increase, and overall healthcare costs would decrease. 

This study aims to demonstrate the benefits of using such a tool, 
called PM-TOM (Personalized Medicine: Therapy Optimization Method) 
[5], on the example of polypharmacy treatments of diabetes mellitus 
type 2 (DMT2) with its cardiovascular comorbidities. 

The specific objectives of this study were to  

1. Demonstrate, on the example of a complex multi-disease, that 
numerous alternative polypharmacy treatments exist with substan
tially different DDIs and, consequently, ADRs.  

2. Show that the polypharmacy optimization tools can find treatments 
with significantly reduced counts of DDIs and their ADRs.  

3. Prove that these tools can find optimized polypharmacy treatments 
efficiently, which is a key requirement to enable effective teamwork 
of doctors involved in the patient’s care. 

1.3. Why diabetes mellitus type 2 and cardiovascular diseases? 

DMT2 is a multi-disease of high health significance and widespread 
occurrence, particularly in older populations. Its medication treatments 
are usually complicated by several comorbidities, such as various forms 
of cardiovascular diseases (CVD), chronic kidney disease (CKD), obesity, 
and hypercholesterolemia (HC). For example, a study [6] found that 
diabetic patients had more comorbidities (10.35 vs. 7.48 in the control 
group) and received more drugs (7.81 vs. 5.33) than their non-diabetic 
counterparts. In addition, the mean number of DDIs and drug-food in
teractions (DFIs) was higher in polypharmacy treatments of DMT2 pa
tients vs. controls: 8.86 vs. 4.98. 

According to World Health Organization [7], adults with diabetes 
historically have a two or three-times higher rate of CVD than adults 
without diabetes. In addition, a study [8] provides a systematic review 
of scientific evidence about the prevalence of CVD in DMT2 patients 
across the world from 2007 to 2017 and found that CVD affected 32.2% 
of cases, 29.1% had atherosclerosis, 21.2% coronary disease, and 14.9% 
heart failure. In addition, CVD was found to cause death in 9.9% of 
cases. 

This study is focused on DMT2 with its frequent CVD comorbidities 
of heart failure (HF) and atherosclerotic cardiovascular disease 
(ASCVD). The treatments of this multi-disease are covered in detail in 
the DMT2 and CVD medical guidelines, for example, US [9–11], Euro
pean [12–14], and Canadian [15–17]. In addition, recommendations for 
the treatment and prevention of dyslipidemia as a possible precursor of 
ASCVD are also elaborated in numerous papers, for example, [18–20]. 
All these publications provide detailed recommendations about drug 
classes to be used or avoided in different stages of DMT2 with these 
comorbidities. However, these guidelines did not elaborate on the DDI 
ADR risks in these regimens. Therefore, this study aimed to address this 
deficiency as well. 

1.4. Why PM-TOM? 

PM-TOM [5] is a polypharmacy optimization tool that finds treat
ments with minimized drug-drug, drug-condition, and drug-gene in
teractions (DDIs, DCIs, and DGIs). It takes as inputs a patient’s 
conditions, genome (optional), and candidate drugs (or drug classes), 
which the doctor defines after considering the patient’s conditions, test 
results, allergies, age, and ADRs. In addition, the doctor can indicate 
preferred drugs for each condition, which will form the Initial Treatment 
(IT) [5]. When the IT is not defined, the tool will form it as a combi
nation of single drugs, one from each candidate drug set, having a 
minimal count of interactions with all drugs. 

PM-TOM applies a heuristic algorithm that starts from the IT and 
then improves it by replacing each IT drug with a candidate drug for the 
same condition but with minimal DDIs, DCIs and DGIs against other IT 
drugs [5]. In that way, the algorithm is investigating only a subset of all 
possible alternative treatments rather than all possible ones. For 
example, if the doctor has selected k classes, each with Mi drugs, i=1 … 
k, and the IT is composed of a single drug from each selected class, then 
the tool would investigate M1 + M2 + … + Mk alternative treatments 
rather than M1 *M2 * … * Mk. As the tool investigates only a subset of 
candidate treatments, it can achieve high efficiency. Although the tool 
does not necessarily find the polypharmacy treatments with the absolute 
minimum count of DDIs, it still finds one close to it. 

PM-TOM was developed and tested using the electronic medical re
cords of the Harvard Personal Genome Project (PGP) [21]. Studies [5,22, 
23] demonstrated that the tool could suggest significantly improved 
treatments while using the doctor’s expertise and meeting the efficiency 
criteria. Thus far, to the author’s best knowledge, tools with similar 
functionality have not been introduced yet. 

2. Method 

Fig. 1 shows the study steps. In the first step, the DMT2 comorbidities 
HF and ASCVD were chosen for analysis. The same method can be 
applied to other multi-diseases as well. 

In Step 2, 20 recommended drug classes for treating these diseases 
were selected (Table 1) according to the above medical guidelines. As a 
result, the following eight classes were chosen for the treatment of 
DMT2: biguanides-metformin (BG), sodium-glucose transporter 2 in
hibitors (SGLT2i), glucagon-like peptide-1 receptor agonists (GLP-1ra), 
sulfonylureas (SU), dipeptidyl peptidase 4 inhibitors (DDP4i), and the 
rapid-, intermediate- and long-acting insulins (INS-R, INS-I, INS-L). This 
study’s class INS-I includes insulin human and its variant neutral prot
amine Hagedorn (NPH) insulin, frequently classified as fast-acting and 
intermediate-acting insulins, respectively. However, as they have the 
same protein formula, drug ingredient ID, and DDIs, they were classified 
into the same class. For HF, seven classes of drugs were included: 
aldosterone receptor antagonists (MRA), angiotensin 2 receptor blockers 
(ARB), angiotensin-converting enzyme inhibitors (ACEi), beta- 
adrenergic blockers (BB), loop diuretics (LD), potassium-sparing di
uretics (PSD), and thiazide diuretics (TD); and five for ASCVD: statins 
(STAT), cholesterol absorption inhibitors-ezetimibe (CAI), fibric acid 
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agents (FAA), proprotein convertase subtilisin/kexin type 9 inhibitors 
(PCSK9i), and bile acid sequestrants (BAS). 

In Step 2.1, drugs and drug classes not recommended for the treat
ment of DMT2 and HF were excluded from the analysis, such as thia
zolidinediones (TZD) [10,14,17], calcium channel blockers (CCB) [13, 
17], and the DDP4i drugs saxagliptin and alogliptin [10,17,24]. Some 
studies, like [25], report that some of these drugs may not pose a much 
higher risk than other antihyperglycemic agents; however, further dis
cussion of these differences is not in this study’s scope. Also, other drug 
classes used to treat these conditions, for example, alpha-glucosidase 
inhibitors, meglitinide, anti-obesity agents, and dopamine agonists, 
were not included, as they were not elaborated on in these guidelines. 

The treatment cases for analysis and their groupings were introduced 
in step 3. A treatment case (referred to as a case) is an acceptable 
combination of drug classes for the polypharmacy treatment or pre
vention of the observed multi-disease. The cases with the same number 
of drug classes were organized into case groups: Basic (one drug class for 
DMT2, HF and ASCVD each), Medial (combinations of two drug classes 
for DMT2, two for HF and one for ASCVD) and Advanced (combinations 

of three drug classes for DMT2, three for HF and two for ASCVD). These 
groups are specified in Table 2. 

Unrecommended drug class combinations are identified in Step 3.1. 
For example, the following class combinations were excluded from the 
above cases: SGLT2i and insulins due to increased drug-related adverse 
events, urinary tract infections, and genital infections [26], GLP-1ra and 
DPP4i due to pancreatitis risk [27], SU and insulins due to increased 
mortality [28]. Some of these drug class combinations classes may be 
justified in clinical practice; however, they were excluded to keep this 
study focused on accepted polypharmacy treatments of selected 
diseases. 

While the case groups could also correspond to the progression 
stages of DMT2 with observed comorbidities, they did not intend to 
suggest nor exclude any possible polypharmacy treatment of these 
diseases. 

In step 4, information about 84 drugs from the above classes was 
extracted from DrugBank [29], including their classes, uses, and DDIs, 
and loaded into the ORACLE database. Experimental or withdrawn 
drugs were excluded. Table 1 shows the drugs selected in each class. A 

Fig. 1. The study steps. Selection of a multi-disease, finding applicable drug classes, and defining treatment case groups. Data preparation. Finding treatments with 
minimal and maximal DDIs. Analysis of exemplary cases. Statistical Analysis. 
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total of 8,151 DDIs between these drugs were found. 
In Step 5, the PM-TOM tool was applied to each case to find the drug 

combinations with minimal and maximal drug interactions (MIN-DDI 
and MAX-DDI). The IT for finding a MIN-DDI was formed as a 

combination of drugs from the case classes with minimal DDIs against all 
other study’s drugs (Table 1). On the other hand, for the MAX-DDI 
treatments, the drugs with maximal interactions were used. As the 
outcome of this step, PM-TOM generated MIN-DDI and MAX-DDI for all 
962 cases. Examples of the MIN-DDI and MAX-DDI treatments are 
shown in Table 3. The tool was implemented in the cloud versions of the 
ORACLE applications server (APEX), version 22, and the ORACLE 
database, version 21. 

In step 6, one representative case from each group was selected to 
illustrate the study results. Table 3 shows their drug classes, MIN-DDI 
and MAX-DDI treatments, and detailed descriptions of their critical 
and other DDIs. 

Next, in Step 7, the DDI statistics of the MIN-DDI and MAX-DDI 
treatments for each case group were calculated. The statistical results 
presented in Table 4 and Fig. 3 include the minimal, average, and 
maximal DDI counts for each case group and treatment type (MIN-DDI 
and MAX-DDI). In addition, the distribution of cases per DDI count was 
presented for MIN-DDI treatments in Fig. 3 and MAX-DDI ones in Fig. 4. 
Finally, the examples and statistical results are analyzed in Section 3 and 
discussed in Section 4, particularly how they meet the study objectives. 

The complete results of the study can be found at site [34], including 
cases in each group, drug combinations for each MIN-DDI and MAX-DDI, 
their DDIs, and the complete statistical results. 

3. Results 

3.1. Sample cases 

Table 3 illustrates the MIN-DDI and MAX-DDI treatments for select 
cases from each group. Each case is explained in terms of considered 
drug classes, drugs selected in each treatment type, their DDI counts (all 
and critical DDIs), and the DDI details. These cases were defined as 
follows. Classes BG (metformin) for DMT2, ARB for HF, and STAT for 
ASCVD were included in all cases, and GLP-1ra for DMT2 and BB for HF 
were added in the Medial and Advanced cases. Finally, class INS-L was 
added for DMT2, LD for HF, and CAI (ezetimibe) for ASCVD in the 
Advanced stage. 

After applying PM-TOM to all three cases, MIN-DDI treatment in the 
Basic case showed only one non-critical DDI, one critical and two non- 

Table 1 
Selected drug classes and drugs to study the DMT2, HF, and ASCVD treatments. 
Excluded classes and drugs: saxagliptin and alogliptin (DDP4i), thiazolidine
diones (TZD), and calcium channel blockers (CCB).  

Drug Class Class 
Acronym 

Disease 
Acronyms 

Drug 
ct. 

Drugs 

Aldosterone 
receptor 
Antagonists 

MRA HF 2 Eplerenone, 
spironolactone. 

Angiotensin 2 
receptor 
blockers 

ARB HF 7 Candesartan, candesartan 
cilexetil, irbesartan, 
losartan, olmesartan, 
telmisartan, valsartan. 

Angiotensin- 
converting 
enzyme 
inhibitors 

ACEi HF 11 Benazepril, captopril, 
enalapril, fosinopril, 
lisinopril, moexipril, 
perindopril, quinapril, 
ramipril, trandolapril, 
zofenopril. 

Beta- 
adrenergic 
blockers 

BB HF 5 Atenolol, bisoprolol, 
carvedilol, metoprolol, 
nebivolol. 

Biguanides BG DMT2 1 Metformin. 
Bile acid 

sequestrants 
BAS ASCVD 3 Cholestyramine, 

colesevelam, colestipol. 
Cholesterol 

absorption 
inhibitors 

CAI ASCVD 1 Ezetimibe. 

Dipeptidyl 
peptidase 4 
inhibitors 

DDP4i DMT2 3 Anagliptin, linagliptin, 
vildagliptin. 

Fibric acid 
agents 

FAA ASCVD 4 Bezafibrate, clofibrate, 
fenofibrate, Ggmfibrozil. 

GLP-1 receptor 
agonists 

GLP-1ra DMT2 6 Albiglutide, dulaglutide, 
exenatide, liraglutide, 
lixisenatide, semaglutide. 

Insulin regular 
and 
immediate- 
acting 

INS-I DMT2 1 Insulin regular/insulin 
NPH (these insulins have 
the same protein formula 
but different acting 
times). 

Insulin long- 
acting 

INS-L DMT2 3 Insulin degludec, insulin 
detemir, insulin glargine. 

Insulin rapid- 
acting 

INS-R DMT2 3 Insulin aspart, insulin 
glulisine, insulin lispro. 

Loop diuretics LD HF 5 Bumetanide, etacrynic 
acid, furosemide, 
piretanide, torasemide. 

PCSK9 
inhibitors 

PCSK9i ASCVD 2 Alirocumab, evolocumab. 

Potassium- 
sparing 
diuretics 

PSD HF 4 Amiloride, eplerenone, 
spironolactone, 
triamterene. 

Sodium- 
glucose 
transporter 2 
inhibitors 

SGLT2i DMT2 4 Canagliflozin, 
dapagliflozin, 
empagliflozin, 
ertugliflozin. 

Statins STAT ASCVD 7 Atorvastatin, fluvastatin, 
lovastatin, pitavastatin, 
pravastatin, rosuvastatin, 
simvastatin. 

Sulfonylureas SU DMT2 7 Chlorpropamide, 
glimepiride, glipizide, 
glyburide, tolazamide, 
tolbutamide, gliclazide. 

Thiazide 
diuretics 

TD HF 5 Chlorothiazide, 
chlorthalidone, 
indapamide, 
hydrochlorothiazide, 
trichlormethiazide. 

20   84   

Table 2 
Treatment case groups, drug classes, and exclusions. The treatments in these 
groups could correspond to the stages of DMT2 with the selected comorbidities.  

Case 
group 

Drug combinations 

Classes DMT2 HF ASCVD Exclusions 

Basic 3 One drug 
from any 
DMT2 
class 

One 
ACEi or 
ARB 
drug 

One STAT 
drug  

Medial 5 Two drugs, 
each from 
two 
different 
DMT2 
classes 

One 
ACEi or 
ARB 
drug +
One BB, 
MRA, 
LD, TD, 
or PSD 
drug 

One STAT 
drug 

Drug 
combinations of 
SU and any INS, 
GLP-1ra and 
DPP4i, SGLT2i 
and any INS. 

Advanced 8 Three 
drugs, 
each from 
three 
different 
DMT2 
classes 

One 
ACEi or 
ARB 
drug +
One BB 
drug +
One 
MRA, 
LD, TD, 
or PSD 
drug 

One STAT 
drug +
One BAS, 
CAI, FAA, 
or PCSK9i 
drug 

Drug 
combinations of 
SU and any INS, 
GLP-1ra and 
DPP4i, SGLT2i 
and any INS.  
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Table 3 
Examples of the MIN-DDI and MAX-DDI treatments for selected cases. The range of DDI counts in MIN-DDI and MAX-DDI is (1,2) in the Basic case, (3, 7) in the Medial, 
and (8, 20) in the Advanced, indicating a large room for minimization of DDI ADRs in nonoptimized treatments.  

Case group Treatment. DMT2 HF ASCVD DDI 
ct. 

Critical DDI Descriptions 

Basic (BG, ARB, STAT) MIN-DDI BG: metformin ARB: 
candesartan 
cilexetil 

STAT: 
pitavastatin 

1 0 1. Metformin may increase the hypolipidemic activities of 
pitavastatin. 

MAX-DDI BG: metformin ARB: valsartan STAT: 
pravastatin 

2 0 1. The excretion of valsartan can be decreased when 
combined with pravastatin.2. Metformin may increase the 
hypolipidemic activities of pravastatin. 

Medial (BG, GLP-1ra, 
ARB, BB, STAT) 

MIN-DDI BG: metformin 
GLP-1ra: 
dulaglutide 

ARB: 
candesartan 
cilexetil 
BB: bisoprolol 

STAT: 
pitavastatin 

3 1 1. Metformin may increase the hypolipidemic activities of 
pitavastatin. 2. Metformin may decrease the excretion rate 
of bisoprolol, which could result in a higher serum level. 3. 
The risk or severity of hypoglycemia can be increased when 
metformin is combined with dulaglutide. 

MAX-DDI BG: metformin 
GLP-1ra: 
Lixisenatide 

ARB: valsartan 
BB: metoprolol 

STAT: 
pravastatin 

7 2 1. The risk or severity of hypoglycemia can be increased 
when metformin is combined with lixisenatide. 2. 
Metoprolol may decrease the excretion rate of lixisenatide, 
which could result in a higher serum level. 3. The serum 
concentration of metformin can be increased when 
combined with metoprolol. 4. Metformin may increase the 
hypolipidemic activities of pravastatin. 5. The serum 
concentration of metoprolol can be increased when 
combined with pravastatin. 6. The excretion of valsartan can 
be decreased when combined with pravastatin. 7. The risk or 
severity of hyperkalemia can be increased when valsartan is 
combined with metoprolol. 

Advanced (BG, GLP- 
1ra, INS-L, ARB, BB, 
LD, STAT, CAI) 

MIN-DDI BG: metformin 
GLP-1ra: 
dulaglutide 
INS-L: insulin 
detemir 

ARB: 
candesartan 
cilexetil 
BB: bisoprolol 
LD: piretanide 

STAT: 
pitavastatin 
CAI: 
ezetimibe 

8 2 1. The metabolism of bisoprolol can be decreased when 
combined with ezetimibe. 2. Ezetimibe may decrease the 
excretion rate of pitavastatin, which could result in a higher 
serum level. 3. The risk or severity of hypoglycemia can be 
increased when metformin is combined with dulaglutide. 4. 
Metformin may decrease the excretion rate of bisoprolol, 
which could result in a higher serum level. 5. The risk or 
severity of hypoglycemia can be increased when metformin 
is combined with insulin detemir. 6. The therapeutic efficacy 
of metformin can be increased when combined with 
piretanide. 7. Metformin may increase the hypolipidemic 
activities of pitavastatin. 8. The serum concentration of 
ezetimibe can be increased when combined with 
candesartan cilexetil. 

MAX-DDI BG: metformin 
GLP-1ra: 
exenatide 
INS-L: insulin 
glargine 

ARB: valsartan 
BB: metoprolol 
LD: torasemide 

STAT: 
rosuvastatin 
CAI: 
ezetimibe 

20 4 1 Ezetimibe may decrease the excretion rate of rosuvastatin, 
which could result in a higher serum level. 2. Exenatide may 
increase the hypoglycemic activities of insulin glargine. 3. 
The risk or severity of hypoglycemia can be increased when 
insulin glargine is combined with metformin. 4. Metoprolol 
may increase the hypoglycemic activities of insulin glargine. 
5. The therapeutic efficacy of insulin glargine can be 
increased when combined with rosuvastatin. 6. The 
therapeutic efficacy of insulin glargine can be increased 
when combined with torasemide. 7. The risk or severity of 
hypoglycemia can be increased when metformin is 
combined with exenatide. 8. Metformin may increase the 
hypolipidemic activities of rosuvastatin. 9. The serum 
concentration of ezetimibe can be increased when combined 
with metoprolol. 10. The serum concentration of metformin 
can be increased when combined with metoprolol. 11. The 
metabolism of metoprolol can be decreased when combined 
with rosuvastatin. 12. The therapeutic efficacy of exenatide 
can be increased when combined with rosuvastatin. 13. The 
therapeutic efficacy of exenatide can be increased when 
combined with torasemide. 14. The therapeutic efficacy of 
metformin can be increased when combined with 
torasemide. 15. The risk or severity of adverse effects can be 
increased when torasemide is combined with metoprolol. 
16. The metabolism of rosuvastatin can be decreased when 
combined with torasemide. 17. The excretion of ezetimibe 
can be decreased when combined with valsartan.18. The risk 
or severity of hyperkalemia can be increased when valsartan 
is combined with metoprolol.19. The metabolism of 
rosuvastatin can be decreased when combined with 
valsartan. 20. The metabolism of torasemide can be 
decreased when combined with valsartan.  
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critical DDIs were found in the Medial case, and two critical and six non- 
critical in the Advanced. On the other hand, the corresponding MAX-DDI 
treatments displayed significantly higher counts of the critical and other 
DDIs: no critical and two non-critical in the Basic case, two critical and 
five non-critical in the Medial, and four critical and 16 non-critical in the 
Advanced. 

The first observation regarding the selected medication is that can
desartan cilexetil (ARB), and pitavastatin (STAT) were selected in all 
MIN-DDI treatments, in addition to metformin (BG), as the only choice 
in its class. These drugs have minimal interactions and other benefits, as 
found in several studies. For example, a study [30] indicates that can
desartan cilexetil significantly reduced the incidence of cardiovascular 
death, hospital admissions for decompensated heart failure, and 
all-cause mortality in chronic heart failure patients. Also, the selection of 
pitavastatin is aligned with the study [31], which suggests that this 
medication has beneficial effects on the cardiometabolic lipid profile 
and a low potential for drug-drug interactions. In addition, another 
study [32] reported that pitavastatin reduced the risk of new-onset 
DMT2 compared with atorvastatin or rosuvastatin. 

Second, dulaglutide (GLP-1ra) and bisoprolol (BB) were selected in 
the Medial and Advanced cases. This result is aligned with the diabetes 
pharmacotherapy guidelines [11], which recommend dulaglutide as the 
first choice among GLP-1ra drugs with FDA-approved CVD benefits. 
Also, bisoprolol was compared in the study [33] with carvedilol, another 
frequently used BB, with the conclusion that bisoprolol induced 
demonstrable improvement in pulmonary function and caused fewer 
adverse events. 

Third, insulin detemir (INS-L), piretanide (LD), and ezetimibe (CAI) 
were added to the above drugs in the Advanced case. As expected, the 
combinations of three DMT2 drugs, three HF drugs, and two ASCVD 
could have several DDIs (8 in this case). However, other drug combi
nations would have higher or the same DDI counts in this case. 

In the MAX-DDI treatments, valsartan (ARB) was found in all cases, 
metoprolol (BB) in the Medial and Advanced cases, and pravastatin 
(STAT) in the Basic and Medial ones, indicating that these drug com
binations should be avoided in the observed treatment case. 

3.2. Statistical results 

Statistical analysis of all results is presented in Table 4 and graphi
cally in Fig. 2. 

The first part of Table 4, labelled Treatments, shows the counts of 
drug classes, cases, the examined and all possible drug combinations for 
each case group and treatment type. The 962 considered cases can 
produce 61,198,200 drug combinations for each treatment type (on 
average, 63,616 per case), each representing a potential polypharmacy 
treatment of the observed diseases. On the other hand, the PM-TOM 
algorithm examined only 40,393 combinations, or 42 per case on 
average, to find a MIN-DDI or MAX-DDI. 

The rest of the table presents the minimal, average and maximal 
counts of DDIs (all and critical) for MIN-DDI and MAX-DDI treatments in 
each case group, indicating the possible room for improvement of DDI 
counts in unoptimized polypharmacy treatment in each case group. 

For example, the range of DDI counts in the MIN-DDI treatments in 
the Medial group is between 0 and 5, with an average of 1.66, and in the 
MAX-DDI treatments, between 5 and 10, with an average of 7.66. 
Furthermore, MIN-DDIs in the Advanced group have DDI counts be
tween 0 and 14, with an average of 5.76, while the corresponding MAX- 
DDI counts are between 14 and 27, with an average of 20.52. 

A particular concern is the critical DDIs, as they pose high health 
risks due to the possibility of severe ADRs. The range of the critical DDI 
counts in the Medial group MIN-DDI treatments is between 0 and 2, with 
an average of 0.61 and in the MAX-DDI treatments, between 0 and 4, 
with an average of 1.65. Also, in the Advanced group, MIN-DDIs have 
critical DDI counts between 0 and 6, with an average of 1.86, while these 
DDI counts in MAX-DDIs are between 1 and 10, with an average of 4.7. 

The above statistical results are further elaborated in Figs. 3 and 4, 
which show the distribution of cases per each possible DDI count for 
each case group and treatment type. For example, 14 of 16 cases (87%) 
in the MIN-DDI treatments in the Basic group have no DDIs. In the 
Medial group, 77 out of 210 cases (37%) have no DDIs, and 148 have 
two DDIs or less (70%). Furthermore, 69 out of 736 cases in the 
Advanced group have no DDIs (9%), and 370 have 5 DDIs or less (over 
49%). On the other hand, the MAX-DDI treatments show the following. 
In the Basic group, 10 out of 13 cases (77%) have two or more DDIs; in 
the Medial, 182 out of 210 cases have seven or more DDIs (87%); and in 
the Advanced 619 out of 736 cases have 18 or more DDIs (84%). 

The ranges between the minimal and maximal DDI counts show 
significant room for selecting good and bad polypharmacy treatments. 
In addition, the percentage of optimized (MIN-DDI) treatments with no 
or a small number of DDIs in each case group further justifies the need 
and benefits of their optimization. 

3.3. Tool efficiency and efficacy 

Finding all 962 MIN-DDI and MAX-DDI polypharmacy treatments 
with PM-TOM in this study took 183 s, an average of 0.2 s per case. 

This efficiency was achieved thanks to its heuristic algorithm that 
examines only a subset of candidate treatments. For example, to find the 
MIN-DDI of the case presented in Table 3 with classes BG, GLP-1ra, INS- 
L, ARB, BB, LD, STAT and CAI, PM-TOM spent 0.592 s examining 35 
drug combinations. Finding the corresponding treatment with the 
(absolutely) minimal DDI count (A-MIN-DDI) required 2 min and 24 s to 
examine all 22,050 possible drug combinations. However, the count of 
possible drug combinations in the candidate polypharmacy treatments 
can be much higher. For example, if the doctor selected the following 
drug classes: GLP-1ra (M1 = 6 drugs), SGLT2i (M2 = 4), and SU (M3 = 7) 
for DMT2; ACEi (M4 = 11), BB (M5 = 5), LD (M6 = 5) for HF and STAT 

Table 4 
Statistical Results. The range of average DDI counts in MIN-DDI and MAX-DDI is (0.19, 1.75) in the Basic case, (1.66, 7.66) in the Medial, and (5.76, 20.52) in the 
Advanced. These ranges indicate scopes for minimizing DDI ADRs in nonoptimized treatments.  

Treatments DDI ct. Critical DDI ct. 

Case group Drug 
classes 

Cases Type Examined drug 
combinations 

All drug 
combinations 

Minimal Average Maximal Minimal Average Maximal 

Basic 3 16 Min-DDI 320 3,528 0 0.19 2 0 0.06 1 
Max- 
DDI 

320 3,528 0 1.75 3 0 0.25 1 

Medial 5 210 Min-DDI 6,209 613,872 0 1.66 5 0 0.61 2 
Max- 
DDI 

6,209 613,872 5 7.66 10 0 1.65 4 

Advanced 8 736 Min-DDI 33,864 60,580,800 0 5.76 14 0 1.87 6 
Max- 
DDI 

33,864 60,580,800 14 20.52 27 1 4.7 10 

Total  962  80,786 122,396,400        
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(M7 = 7) and FAA (M8 = 4) for ASCVD, then PM-TOM would investigate 
49 combinations, rather then 1,293,600. 

The polypharmacy optimization tool efficacy can be defined as the 
ability to find the MIN-DDI treatments with the DDI counts the same or 
close to the DDI counts of the corresponding A-MIN-DDI treatments. 

In this study, PM-TOM efficacy was evaluated by using three testing 

sets: (a) the cases with no DDI in MIN-DDI treatments, (b) 10 frequently 
used treatment cases from the Medial group with the following struc
ture: class 1 = BG, class 2 = DDP4i, class 3 = ACEi or ARB, class 5 = BB, 
LD MRA, PSD or TD and class 5 = STAT, and (c) the case with eight 
classes presented in Table 3, defined as a combination of eight classes: 
(BG, GLP-1ra, INS-L, ARB, BB, LD, STAT, CAI). The results were the 

Fig. 2. The diagrams graphically illustrate the results in Table 3. The count of DDIs significantly increases with the number of drugs in the treatments. The table and 
the diagrams show that it is possible to find treatments in each case group with no DDIs. 

Fig. 3. Case counts per DDI count in MIN-DDI treatments. 14 of 16 cases (87%) in the Basic group, 77 out of 210 in the Medial (37%), and 69 out of 736 in the 
Advanced (9%) have no DDIs. One hundred forty-eight cases in the Medial group have two DDIs or less (70%), and 370 in the Advanced 5 DDIs or less (over 49%). 
These results show that it is possible to find polypharmacy treatments with no or a low count of DDIs. 

Fig. 4. Case counts per DDI count in MAX-DDI treatments. In the Basic group, 10 out of 13 cases (77%) have two or more DDIs; in the Medial, 182 out of 210 cases 
have seven or more DDIs (87%); and in the Advanced 619 out of 736 cases have 18 or more DDIs (84%). The ranges of DDI Counts between the corresponding MIN- 
DDIs and MAX-DDIs indicate that randomly selected treatments could have a high number of DDIs that require minimization. 
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following.  

(a) The percentage of MIN-DDI treatments with no DDIs was 87% in 
the Basic group, 37% in the Medial and 9% in the Advanced, 
which is identical to the DDI counts of the corresponding A-MIN- 
DDI treatments.  

(b) A-MIN-DDI treatments from the selected testing cases showed 
two DDIs in three cases, three in one case, four in five cases, and 
five in one case. On the other hand, the corresponding MIN-DDI 
treatments had the same DDI count in five cases (50%), while 
in the other, the A-MIN-DDI treatments had one DDI less.  

(c) The DDI count of MIN-DDI in the Advance case from Table 3 was 
eight, the same as that of A-MIN-DDI. 

These examples confirm that the efficiency of the PM-TOM algorithm 
is rather high and that the tool efficacy is not forfeited despite the 
limited number of examined candidate treatments. 

4. Discussion 

4.1. How are the study objectives met? 

Statistical results in Table 4 show that the count of polypharmacy 
treatments in each considered case could be very large, which might 
have significantly different DDI counts. For example, the Advanced 
group with eight drug classes has an average of 83,310 possible alter
native treatments per case, with an average DDI count of 5.76 in the 
MIN-DDI treatments and 20.52 in the MAX-DDI ones. These results 
confirm that the randomly selected (unoptimized) treatments could 
have a high count of DDIs, which might be critical for successfully 
treating patients’ conditions (Objective 1). 

Further, these results demonstrate that optimized polypharmacy 
treatments (MIN-DDI) have significantly lower average DDI counts than 
their corresponding MAX-DDI treatments. In addition, the distribution 
of cases per DDI counts in Figs. 3 and 4 shows that the polypharmacy 
optimization can find many treatments with no or a small number of 
DDIs (Objective 2). 

Thanks to its heuristic algorithm, PM-TOM could optimize poly
pharmacy treatments in this study in a sub-second time while delivering 
the optimal or close to optimal MIN-DDI treatments (Objective 3). The 
efficiency and efficacy of polypharmacy optimization tools are partic
ularly important for the effective use of the time and expertise of medical 
professionals, who usually perform several administrative tasks in 
addition to treating patients. 

4.2. Comparison with similar studies 

In studies [5,22], PM-TOM was applied to depersonalized medical 
records provided by the participants of project PGP [21], which included 
patients’ conditions, drugs and genomes. First, the initial treatment (IT) 
for each patient’s condition was formed as a random selection of drugs 
doctors prescribed to the patient for that condition. Only one drug per 
condition was presumed. Then, the alternative candidate drugs were 
taken from the drugs from all patients’ records prescribed for the same 
condition by the same or another doctor. Finally, the optimized treat
ments were found as combinations of candidate drugs with the minimal 
sum of the DDI and DGI counts against other IT drugs. 

In contrast, this study created treatment cases from drug classes 
recommended in the medical guidelines, presumed that one condition 
can be treated with one or several drugs, and did not consider DGIs. 

In the study [5], PM-TOM reduced the count of DDIs and DGIs from 
22 (in IT) to 5.83 (in the optimized treatments), on average, in the group 
with eight conditions or more. Treatments with maximal interactions 
were not examined. 

The study [22] focused on PGP patients with multi-diseases that 
include at least three frequent diseases: hypertension, diabetes mellitus, 

allergy, hypercholesterolemia, depression, anxiety, and asthma. In pa
tients with eight or more conditions and at least one multi-disease, the 
average count of DDIs and DGIs was reduced from 24 to 9. In that study, 
the polypharmacy treatments with maximal counts of DDIs and DGIs 
were also found, and their average was 72 in the same group. 

In this study, the average DDI count in minimized treatments (MIN- 
DDIs) having eight drugs was 5.76, and that of maximized (MAX-DDI) 
was 20.52. The results of all studies consistently confirm a large scope 
for optimizing polypharmacy treatments and the potential of PM-TOM 
to find optimized treatments efficiently and effectively. 

To the author’s knowledge, no other studies or CDS systems intro
duced tools and methods for minimizing drug interactions in poly
pharmacy treatments. 

4.3. Polypharmacy optimization tool requirements 

This study confirmed the benefits of adding polypharmacy optimi
zation tools to CDS systems. These tools would naturally fit into the CDS 
components regarding patient safety and clinical management, elabo
rated, for example, in the manuscript [3]. 

Based on the PM-TOM experience, these tools should enable clini
cians, clinical pharmacists, and physicians to  

1. Select several potential drugs and drug classes for the treatment of 
patient’s conditions based on relevant guidelines and their knowl
edge of treating similar cases,  

2. Exclude specific individual drugs from these classes, or include drugs 
from other classes, if necessary,  

3. Define the preferred treatment, which will be used by the tool to find 
drug replacements with similar effects but a lower number of DDIs,  

4. Enter patients’ ADRs that the tool would use to report drugs in the 
current treatment that may cause them,  

5. Direct the tools to find treatments with minimal or nearly minimal 
DDIs, and optionally, DCIs, DGIs, drug-supplement interactions 
(DSI), and drug-food interactions (DFI),  

6. Retrieve the patient’s medical record (including ADRs) and its 
history,  

7. Retrieve detailed information about drugs, interactions, products, 
and adverse drug effects.  

8. Perform all functions effectively and efficiently. 

Other useful functions of these tools would be providing drug rec
ommendations according to patients’ diagnostic tests and demographic 
data, drug cost limitations, and experience from treatments of similar 
patients’ cases. 

4.4. Study limitations 

This study did not consider drug-condition interactions (DCIs) and 
drug-gene interactions (DGIs), though PM-TOM supports treatment 
optimization with this information. The availability of well-structured 
information on DCIs for the considered multi-disease is limited, and 
the inclusion of DGIs in the study was out of its scope. 

4.5. Future studies 

The study method can be applied to any other set or number of DMT2 
comorbidities (including hypertension, CKD, and obesity), with or 
without CVD. It can also be used to analyze polypharmacy treatments of 
other frequent chronic diseases, such as arthritis, asthma, chronic 
obstructive pulmonary disease, depression and anxiety, and their com
binations with the above. Future studies on polypharmacy optimization 
can also consider the patient’s age, genotype, tests and demographic 
data, rules from the guidelines, rules derived from clinical expertise, as 
well as DSIs and DFIs. 
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5. Conclusions 

The results of this study demonstrate on the example of DMT2 with 
cardiovascular comorbidities that DDIs in polypharmacy treatments can 
be significantly reduced by using specialized decision support tools, like 
PM-TOM. 

Unfortunately, the CDS systems currently used in clinical practice do 
not include similar tools, which would help resolve the issue of alert 
fatigue and enable doctors to find polypharmacy treatments adequate 
for specific patient conditions and aligned with relevant medical 
guidelines. This study demonstrated that optimizing polypharmacy 
treatments can be done efficiently and effectively, even for cases with 
many treatment options. 

The cases analyzed in this study could correspond to possible 
development stages of the considered multi-disease; however, they do 
not suggest the only ways to combine drug classes for its treatment. Still, 
these cases cover many possible treatment alternatives, sufficient to 
draw the above conclusions. 

The study can be used as a background for other specific studies on 
polypharmacy treatments and possible upgrades of the corresponding 
medical guidelines. 
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