© 2020 European Federation for Medical Informatics (EFM) and IOS Press.
This article is published online with Open Access by IOS Press and distributed under the terms of the Creative Commons Attribution Non-Commercial License 4.0 (CC BY-NC 4.0).

doi:10.3233/SHT1200240

PM-TOM: A Method for Finding Personalized Polypharmacy Therapies with Minimal Adverse Drug-Drug, Drug-Gene and Drug-Condition Interactions

Adnan KULENOVIC^{a,1} and Azra LAGUMDZIJA-KULENOVIC^a
^aA! A – Absolute Information Age, Inc. Toronto, Canada.

Abstract. Polypharmacy therapies, quite frequent in older populations, pose significant health risks for patients due to a high possibility of their cumulative adverse drug reactions. We present Personalized Medicine Therapy Optimization Method (PM-TOM) for the discovery of polypharmacy therapies with minimal drug- drug interactions, drug-gene interactions, and drug-condition interactions. The inputs of the PM-TOM heuristic algorithm are the patient's conditions, genome, and the drug products and therapy considered by a clinician. Its output is a comprehensive report that explains details of the optimal therapies for considered drug products and all drugs that treat the patient's conditions. PM-TOM was developed by using the Electronic Medical Records repository of the Personal Genome Project (PGP), and the public repositories: DrugBank and Comprehensive Toxicogenomics Database (CTD). Testing of PM-TOM showed potential for significant reduction of the cumulative adverse drug interactions in personalized polypharmacy therapies. In the group of patients with 8 to 17 conditions, PM-TOM reduced the average cumulative drug interactions from 22 to 5.83, and the group with 6 to 7 conditions from 11.17 to 3. These results encourage further research and development of clinical decision support tools like PM-TOM.

Keywords. Personalized Medicine, Electronic Medical Records, Polypharmacy Therapies, Clinical Decision Support, Adverse Drug Reactions, Drug-Drug Interactions, Drug-Gene Interactions, Drug-Condition Interactions.

1. Introduction

Multiple studies show that polypharmacy therapies can lead to dangerous adverse drug reactions (*ADR*) and high healthcare costs due to their cumulative drug-drug interactions (*DDI*), drug-gene interactions (*DGI*), and contraindicated drug-condition interactions (*DCI*). Paper [1] reports that the average patient in the examined cohort was prescribed with 12 medications; significant *DGIs* were found in 73% of tested patients and *DDIs* in 87% of patients. In the study explained in paper [2], *DDIs* accounted for 66.1% of the total interactions, and the remaining 33.9% were *DGIs*. In Canada, among patients aged 65 years and older with polypharmacy (>5 drugs) admitted to hospital, the prevalence of potential drug interactions is 80% [3]. The study described in the paper [4] states that in 1994 some 2,216,000 hospitalized patients had

.

¹ Corresponding Author, Adnan Kulenovic, E-mail: A.Kulenovic@rogers.com

severe *ADRs* with 106,000 fatal outcomes, making these reactions between the fourth and sixth leading cause of death in the US that year.

Our research is motivated by the urgency of finding solutions to these troubling facts. In this paper, we present the Personalized Medicine Therapy Optimization Method (*PM-TOM*) for the discovery of polypharmacy therapies with minimal *DDIs*, *DGIs*, and *DCIs* (referred to in the paper as cumulative adverse interactions - *CADIs*). In Section 2, we explain the inputs, outputs, and the database of the *PM-TOM* method, and in Section 3, its heuristic algorithm. In the development, testing, and validation of *PM-TOM*, we used the public data repositories of the *Personal Genome Project (PGP)* [5], *DrugBank* [6], and *Comparative Toxicogenomics Database (CTD)* [7]. Results, presented in Section 4, show that *PM-TOM* has the potential to aid in the significant reduction of the cumulative drug interactions in polypharmacy therapies.

2. PM-TOM Database, Inputs and Outputs

The components of the *PM-TOM* database are (*i*) Electronic Medical Records (*EMR*) repository (denoted as *EMR*), (*ii*) Drug Repository (*DRG*), and (*iii*) Gene-Drug Repository (*GDR*). The current version of *PM-TOM* requires from *EMR* only the patient conditions, drug product prescriptions, and genome (gene variations that could be pathogenic or affect drug behavior, i.e., found to be pharmacogenetic). Other *EMR* elements, such as the patient's gender, race, blood type, drug dosages, etc., will be used in the future *PM-TOM* versions. Formally, $EMR \subset PID \times \mathbb{P}(C) \times \mathbb{P}(G) \times \mathbb{P}(P)$, where *PID* is a set of patient *ID*s, *C* the set of all conditions, *G* the set of all genes and their variants, *P* set of all commercial drug products, and \mathbb{P} powerset symbol.

The drug repository (*DRG*) includes data about the active drug ingredients (referred to as "drugs" in this paper), commercial drug products (referred to as "drug products"), drug-drug interactions, and drug-condition contraindications. The database keeps drug interactions by referencing active drug ingredients (drugs) rather than drug products. If *D* denotes the set of all drugs, then the set of drug products *P* can be defined as $P \subset D \times N$ (*N* is the set of product names). Set DC describes the drug indications, $DC \subset D \times C$. Set $DDI \subset D \times D \times DDS$ defines the drug-drug interactions, where set $DDS = \{1, 2...\}$ quantifies their relative severities. Similarly, set $DCI \subset D \times C \times DCS$ describes the drug contraindications, where set DCS quantifies their severities. Gene-Drug Repository (*GDR*) keeps data about drug-gene interactions and their severities, denoted as set $DGI \subset D \times G \times DGS$ (*DGS* is a set of their severities).

PM-TOM inputs include a patient's (*i*) conditions, (*ii*) considered drug products, (*iii*) genome, and (*iv*) the initial therapy, which is composed of a single drug product for each condition. Formally, the input *PM-TOM* record is $r_i = (pid_i, C_i, G_i, P_i, t_i)$, where $pid_i \in PID$; C_i is the set of the patient's conditions, $C_i \subset C$; G_i is the patient's genome, $G_i \subset G$; P_i is the set of considered drug products, $P_i \subset P$; and t_i is the initial therapy, $t_i \subset C_i \times P_i$.

PM-TOM outputs are (i) optimal therapy for considered drug products, tc, (ii) optimal therapy for all drugs, to, which PM-TOM creates after examining all drugs from EMR applicable to the patient's conditions, and (iii) a detailed personalized therapy report. The report elaborates both optimal therapies, indicating their CADIs, and explaining their drug-drug, drug-gene, and drug-condition interactions. It also includes the list of all available drug products for each drug suggested in to.

3. PM-TOM Algorithm

In Step 1, PM-TOM collects the patient's record. An example is a PGP record with patient's ID = huC29627; conditions $Ci = \{Anxiety, ADHD, Depression\}$; genome $Gi = \{CBS, TGM1, MBL2, C3, BRCA2, COL41A, TP53, ITPA, KCNH2, DRD2, MBL2, CACNA1C\}$; considered drug products $Pi = \{Venlafaxine, Xanax, Zoloft, Escitalopram, Adderall, Ritalin, Celexa, Wellbutrin, Viibryd\}$; and the initial therapy $ti = \{(Anxiety, Zoloft), (ADHD, Adderall), (Depression, Celexa)\}$.

PM-TOM identifies, in Step 2, the corresponding drug (drug ingredient) of each considered drug product. For example, the active drug ingredient of *Xanax* is *Alprazolam*. Next, as Step 3, *PM-TOM* prepares the set of pairs of conditions and considered drug products, called *CDi*. In the above example, *CDi=* {(Anxiety, Venlafaxine), (Anxiety, Xanax), (Anxiety, Escitalopram), (Anxiety, Zoloft)*, (ADHD, Adderall)*, (ADHD, Ritalin), (Depression, Celexa)*, (Depression, Viibryd), (Depression, Wellbutrin)}. The pairs marked with * indicate the initial therapy (ti).

In Step 4, PM-TOM uses set CDi to identify candidate therapies, tk, for considered drug products. It forms candidate therapies by replacing only one drug in the initial therapy with another drug from set CDi applicable to the same condition. An example of a candidate therapy is $\{(Anxiety, Xanax), (ADHD, Adderall)^*, (Depression, Celexa)^*\}$, i.e., for Anxiety, Xanax replaced Zoloft. Note that PM-TOM does not evaluate all combinations of considered drug products so that it could miss the most effective therapy. However, the testing results show that this approach can lead to significant improvements in the initial treatments. If d is the average number of candidate drugs for n conditions, then the complexity of an algorithm that evaluates all drug combinations will be proportional to d^n . PM-TOM examines only n*d candidate therapies.

In Step 5, *PM-TOM* calculates *CADI* indicator (w) of each candidate therapy t_k after examining the following sets: (i) drug-drug interactions $DDI_k = \{ddi_k = (d_1, d_2, dds): \exists (c_1, d_1) \in t_k, \exists (c_2, d_2) \in t_k, ddi_k \in DDI \}$, (ii) drug-gene interactions $DGI_k = \{dgi_k = (d, g, dgs): \exists (c, d) \in t_k, g \in G_i, dgi_k \in DGI \}$, and (iii) drug-condition contraindications $DCI_k = \{dci_k = (d, c, dcs): \exists (c_1, d) \in t_k, \exists (c_1, d_1) \in t_k, dci_k \in DCI \}$. w (t_k) is calculated as

DDIP, *DGIP*, and *DDIP* are the *PM-TOM* parameters that define relative weights of *DDIs*, *DGIs*, and *DCIs* (set to 1 by default). $ddi_k [dds]$, $dgi_k [dgs]$, and $dci_k [dcs]$ indicate severities of these interactions. As an example, the *CADI* indicator of the above initial therapy is $w(t_i) = 6$.

Next, in Step 6, the algorithm iterates through all conditions, and for each condition, finds candidate therapy with minimal CADI. In Step 7, PM-TOM uses the drugs for each condition that form these candidate therapies to create the optimal therapy for considered drug products. In the above case, the optimal therapy is t_c = {(Anxiety, Venlafaxine) #, (ADHD, Ritalin) #, (Depression, Celexa) #}, with $w(t_c)$ = 4.

As mentioned above, PM-TOM is an iterative method. It repeats the above steps, taking the optimal therapy found above as the initial therapy for the next iteration. If the new candidate optimal therapy shows no better w(tc), the algorithm will stop (Step 8).

In the next phase, *PM-TOM* repeats Steps 3-8 to find the optimal therapy for all drugs (to) after (i) collecting all drugs from the *EMR* used to treat the patient's conditions and (ii) taking already found therapy tc as the starting point, instead of therapy ti. In the above example, *EMR* returned 33 applicable drugs. to was found as {(Anxiety, Butabarbital)*, (ADHD, Dexmethylphenidate HCL) *, (Depression, SAM-E) *}, with w (to)=1. The report for this *EMR* can be found at https://www.abs-info-age.com/project-1.

4. PM-TOM Validation and Testing

In the development, testing, and validation of *PM-TOM*, we used the *EMRs* of *PGP*, which include the patient conditions, genome, and administered drug products. *DrugBank* provided the drug product, drug-condition, and drug-drug interaction data, and *CTD* the drug-gene interaction data. We tested 286 *EMRs*. Table 1 lists in column (A) various categories of tested *EMRs*, which have the same number of conditions. Column (B) shows the count of cases and (C) the average number of genes in each category. Columns (D) and (E) display the average number of considered drug products and all drugs applicable to the patient's conditions.

(A)	(B)	(C)	(D)	(E)	(F)	(G)
Conditions	Cases	Genes	Consid. drugs	All drugs	CADI - Consid. drugs	<i>CADI</i> – All drugs
1	77	13.58	1.31	6.12	0.6	0.09
2	119	5.74	2.34	10.6	1.05	0.22
3	49	3.43	3.51	16.71	2.1	0.33
4	16	4.31	4.38	20.88	3.38	0.56
5	13	4.46	5.92	26	4.92	2.08
67	6	2.33	7.33	34	11.17	3
8-	6	10	12.83	42	22	5.83

Table 1. Average *CADI* of the optimal therapies for the considered drugs and all applicable drugs.

Columns (F) and (G) display the average CADIs of the optimal therapies for considered drug products and all applicable drugs, which indicate a significant reduction of the average CADI between these two therapies (approximately three to six times, depending on the category). The algorithm required two iterations (Figure 1).

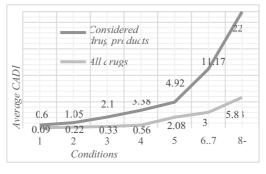


Figure 1. Average CADI for optimal therapies

5. Discussion

In paper [8], the author underlines the need for highly personalized drug selection by expert systems. To the best of our knowledge, *PM-TOM* is an original approach to do so. The testing results presented in Section 4 show that the method can identify possible treatments with significantly decreased *CADIs*. We also tested *EMRs* for some recurrent multi-diseases, like {*Hypertension, Diabetes Mellitus, Hyperlipidemia*}, and their *CADI* reduction was approximately five times. A data mining algorithm for finding frequent multi-diseases, and their possible monogenic causes, is explained in paper [9].

Why do prescribed therapies typically have a high number of drug interactions? We speculate that the reasons are the lack of the patient's genetic data, which would enable finding highly personalized therapies, and the limitations of used tools, which are typically focused on *DDI* alerts. Also, according to the investigation in the US, reported in paper [10], these alerts are overridden for various reasons in about 90% of cases.

PM-TOM is an efficient iterative heuristic algorithm. Its testing confirmed that very few iterations lead to finding therapies with significantly decreased CADIs. The algorithm complexity is rather low as it evaluates a small subset of candidate therapies. For example, for seven candidate drugs for 12 conditions, PM-TOM will examine only 84 candidate therapies per iteration of possible 14 billion ones. Due to that feature, PM-TOM has room for extension with other features relevant for polypharmacy therapies, such as (i) rule-based medical guidelines, (ii) lab test results, (iii) drug dosages, (iv) patient's demographic data (age, race, gender, environment), (v) drug-drug-gene interactions (DDGIs), (vi) drug-food interactions, (vii) drug-microbiome interactions, and others.

References

- [1] K Reynolds, D. Pierce, F. Weitendorf, M. Linder: Avoidable drug-gene conflicts and polypharmacy interactions in patients participating in a personalized medicine program. *Personalized Medicine* **14** (2017), 221-233.
- [2] P. Verbeurgt et al., How common are drug and gene interactions? Prevalence in a sample of 1143 patients with CYP2C9, CYP2C19, and CYP2D6 genotyping, *Pharmacogenomics*. **5** (2014), 655-65.
- [3] C. Tannenbaum, N. Sheehan, Understanding and preventing drug-drug and drug-gene interactions, *Expert Reviews, Clinical Pharmacology*, 7 (2014), 533–544.
- [4] J. Lazarou, B. Pomeranz, P. Corey, Incidence of adverse drug reactions in hospitalized patients: a metaanalysis of prospective studies, *JAMA* 15 (1998), 1200-1205
- [5] M. Ball et al., Harvard Personal Genome Project: Lessons from participatory public research, Genome Medicine 6 (2014).
- [6] D. Wishart, Y. Feunang A. Guo, et al., DrugBank 5.0: a major update to the DrugBank database for 2018, Nucleic Acids Research (2018), D1074-D1082.
- [7] A. Davis, C. Grondin, R. Johnson, D. Sciaky, R. McMorran, J. Wiegers et al., The Comparative Toxicogenomics Database: update 2019, *Nucleic Acids Research*. (2019), D948-D954.
- [8] C. Hizel. Highly personalized reports for personalized drug selection by expert systems as clinical decision support, *Personalized Medicine* **14** (2017), 93-97.
- [9] A. Kulenovic, A. Lagumdzija-Kulenovic: Discovering Monogenic Causes of Multi-Diseases by Mining Electronic Medical Records and Genetics Repositories, *Studies in Health Technology and Informatics* 258 (2019), 189-193.
- [10] A. Wright et al., Structured override reasons for drug-drug interaction alerts in electronic health records, Journal of the American Medical Informatics Association 26 (2019), 934-942.